Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334316

RESUMO

Erucamide is known to play a critical role in modifying polymer fiber surface chemistry and morphology. However, its effects on fiber crystallinity and mechanical properties remain to be understood. Here, synchrotron nanofocused X-ray Diffraction (nXRD) revealed a bimodal orientation of the constituent polymer chains aligned along the fiber axis and cross-section, respectively. Erucamide promoted crystallinity in the fiber, leading to larger and more numerous lamellae crystallites. The nXRD nanostructual characterization is complemented by single-fiber uniaxial tensile tests, which showed that erucamide significantly affected fiber mechanical properties, decreasing fiber tensile strength and stiffness but enhancing fiber toughness, fracture strain, and ductility. To correlate these single-fiber nXRD and mechanical test results, we propose that erucamide mediated slip at the interfaces between crystallites and amorphous domains during stress-induced single-fiber crystallization, also decreasing the stress arising from the shear displacement of microfibrils and deformation of the macromolecular network. Linking the single-fiber crystal structure with the single-fiber mechanical properties, these findings provide the direct evidence on a single-fiber level for the role of erucamide in enhancing fiber "softness".

2.
Langmuir ; 37(21): 6521-6532, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34015220

RESUMO

Understanding the nanostructure and nanomechanical properties of surface layers of erucamide, in particular the molecular orientation of the outermost layer, is important to its widespread use as a slip additive in polymer materials. Extending our recent observations of nanomorphologies of erucamide layers on a hydrophilic silica substrate, here we evaluate its nanostructure on a more hydrophobic polypropylene surface. Atomic force microscopy (AFM) imaging revealed the molecular packing, thickness, and surface coverage of the erucamide layers, while peak force quantitative nanomechanical mapping (QNM) showed that erucamide reduced the adhesive response on polypropylene. Synchrotron X-ray reflectivity (XRR) was used to probe the out-of-plane structure of the surface layers. Static contact angle measurements further corroborated on the resulting wettability, also demonstrating the efficacy of erucamide physisorption in facilitating control over polypropylene surface wetting. The results show the formation of erucamide monolayers, bilayers and multilayers, depending on the concentration in the spin-cast solution. Correlation of AFM, XRR and wettability results consistently points to the molecular orientation in the outermost layer, i.e. with the erucamide tails pointing outward for the surface nanostructures with different morphologies (i.e., bilayers and multilayers). Rare occurrence of monolayers with exposed hydrophilic head groups were observed only at the lowest erucamide concentration. Compared with our previous observations on the hydrophilic surface, the erucamide surface coverage was much higher on the more hydrophobic propylene surface at similar erucamide concentrations in the spin-cast solution. Furthermore, the structure, molecular orientation and nanomechanical properties of the spin-cast erucamide multilayers atop polypropylene were also similar to those on industrially relevant polypropylene fibers coated with erucamide via blooming. These findings shed light on the nanostructural features of the erucamide surface layer underpinning its nanomechanical properties, relevant to many applications in which erucamide is commonly used as a slip additive.

3.
J Colloid Interface Sci ; 590: 506-517, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33567375

RESUMO

HYPOTHESIS: Despite the widespread industrial usage of erucamide as a slip additive to modify polymer surface properties, a controversy appears to have persisted regarding the nanostructure of erucamide surface layers, particularly the molecular orientation at the outermost layer. The erucamide nanostructure and molecular orientation, along with its surface coverage, hydrophobicity, and adhesive response, can be tuned by simply varying the erucamide concentration in the solution from which the spin coated layer is prepared. EXPERIMENTS: Synchrotron X-ray reflectivity (XRR) allowed a comprehensive characterisation of the out-of-plane structural parameters (e.g. molecular packing and thickness) of the erucamide layers prepared via spin coating from nonaqueous solution on silica. Complementary Atomic Force Microscopy (AFM) imaging with high lateral resolution revealed localised in-plane structures. Contact angle measurements provided information on the wettability of erucamide-coated surfaces. Peak Force Quantitative Nanomechanical Mapping (QNM) allowed a correlation between the erucamide nanostructure with the surface nanomechanical properties (i.e. adhesive response). FINDINGS: Our results reveal erucamide surface nanostructures on silica as patchy monolayers, isolated circular bilayers/rounded rectangle-like aggregates and overlapping plate-like multilayers as the erucamide concentration in the spin coating solution was varied. In all the cases, XRR and AFM results were consistent with the picture that the erucamide tails were oriented outwards. The QNM adhesion force mapping of all the observed morphologies also supported this molecular orientation at the outermost erucamide monolayer. The wettability study further confirmed this conclusion with the observed increase in the surface hydrophobicity and coverage upon increasing erucamide concentration, with the macroscopic water contact angle θ = 92.9° ± 2.9° at the highest erucamide concentration of 2 wt%.

4.
J Colloid Interface Sci ; 571: 398-411, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32247192

RESUMO

HYPOTHESIS: Thermal through-air bonding process and slip additive treatment affect fibre surface structure and nanomechanical properties, which is extremely difficult to characterise on a single-fibre level. EXPERIMENTS: Optical microscopy (OM) was applied to study the effect of air-through bonding, spunbonding, and crimping on fibre geometry and general appearance. A "spray-on" method developed here using a custom-designed fibre holder allowed a direct measurement of static contact angles of water droplets on single fibres. Scanning electron microscopy (SEM) showed different morphological features on the fibre due to the nonwoven fabric-making process and additive treatment. Synchrotron X-ray diffraction (XRD) was applied to study the effect of erucamide presence on polypropylene (PP) fibre crystal structure. Atomic force microscopy (AFM) imaging provided complementary characterization of fibre topographic features such as average surface roughness, along with adhesion force mapping by quantitative nanomechanical (QNM) AFM imaging. FINDINGS: Our results show the effect of nonwoven making process and surfactant additive treatment on the fibre surface structure and nanomechanical properties. Wettability experiment on the single fibre revealed the hydrophobic nature of all the synthetic fibres. For polyethylene/polyethylene terephthalate (PE/PET) bicomponent single fibres, the polyethylene sheath was found to possess fibrillar microstructure - typical for drawn fibres, whereas the fibres entangled in nonwoven fabrics exhibited a uniform, porous surface morphology attributed to the through-air process. Adhesion force mapping allowed us to correlate fibre nanomechanical properties with its topography, with surface pore interiors showing higher adhesion than the flat polyethylene region. Furthermore, on the polypropylene (PP) fibre surface treated with erucamide (13-cis-docosenamide; a common slip additive used in polyolefin film processing), we observed overlapping multilayers consisting of 4 nm erucamide bilayers, attributed to the slip additive migration onto the fibre surface. XRD measurements of the fibres did not detect the presence of erucamide; however, AFM imaging provided evidence for its migration to the fibre surface, imparting influence on the surface structure and adhesive properties of the fibre. Single-fibre AFM imaging also allowed a detailed analysis of different surface roughness parameters, revealing that both through-air bonding in the nonwoven making process and the slip additive (erucamide) treatment affected the fibre surface roughness. The wettability, surface morphology, and adhesion properties from this study, obtained with unprecedented resolution and details on single fibres, are valuable to informing rational design of fibre processing for fibre optimal properties, critically important in many industrial applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...